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ABSTRACT
Affective media videos have been used as stimulus to investigate
an individual’s affective-physio responses. In this study, we aim to
develop a network learning strategy for robust cross-corpus emo-
tion recognition using physiological features jointly with affective
video content. Specifically, we present a novel framework of Visual
Semantic Graph Learning Convolutional Network (VGLCN) for
individual emotional state recognition using physiology on transfer
learning tasks. The stimulus of videos content is integrated into
learnable graph structure toweight the importance of physiology on
the two emotion dimensions, valence and arousal. Furthermore, we
evaluate our proposed framework on two public emotion databases
with a rigorous cross validation method, and our model achieves
the best unweighted average recall (UAR), which is 67.9%, 56.9% for
arousal and 79.8%, 70.4% for valence on the cross datasets recog-
nition experiments respectively. Further analyses reveal that 1)
VGLCN is especially effective on transfer valence binary-task, 2)
the physiological features (ECG, EDA) are very informative fea-
tures for emotion recognition and 3) the affective media videos are
important constraint to be included in the framework to stabilize
the performance power.

CCS CONCEPTS
• Information systems→Personalization; •Human-centered
computing → Ubiquitous computing.
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1 INTRODUCTION
A content-centric understanding of affect has become an increas-
ingly “hot topic” in psychology, researchers have shown great in-
terest in computationally understanding human’s emotional state
as an internal generative process when exposing to affective media
[19]. At the same time, in the field of multimedia processing, the
ability to automatically characterize a large amount of unstructured
media content with relevant, reliable and discriminative tags is criti-
cal for intelligent indexing, retrieval and recommendation. Affective
characteristics are important features for describing multimedia
content, especially with its impact on viewer-induced internal affec-
tive responses [14]. These affective responses often underlie many
decision making and design choices of technological solutions. For
example, Chanel et al. [3] modified the difficulty of a video game ac-
cording to the user’s emotional state to maintain high engagement.
Baveye et al. [1] provided insights on understanding the intended
emotion stimulation that film maker attempts to perform in order
to boost the box office through video content analysis. Developing
algorithms to automatically infer subject’s emotions while viewing
affect-rich video data not only provides additional analytics for
commercial purposes, many of the derived insights bring additional
understanding in the content-centric aspect of these influential
affective multimedia.

Most of the recent studies in using physiology to perform auto-
matic emotion recognition rely on using films, which contains both
visual and audio scenes resembling real-life scenarios, as stimuli to
elicit physiological changes [9, 16]. In fact, there exist several public
affective databases, such as Amigos [4] and Ascertain [24], that use
short film clips as emotion stimuli in triggering affective internal
responses that are further captured through physiological wear-
able devices. Some notable works of using physiology for emotion
recognition includes: Yang et al. [30] proposed a network in learn-
ing personality attribute-invariant physiological representation to
enhance emotion discriminability; Santamaria et al. [22] used CNN
for automatic feature learning from physiological signals to predict
emotion states; Feng et al. [6] and Xu et al. [29] also presented
an approach of emotion recognition with complexly-designed af-
fective features using physiology from multiple subjects. While
many of these research demonstrate promising accuracies when
training and testing on a single database, only few studies work
on cross-corpus emotion recognition using physiological signals to
investigate the generalizability of such a technology. For example,
Lan et al. [15] proposed an ECG-based transfer learning framework.
Sun et al. [25] investigated the relationship between two different
databases via SEMG. However, to the best of our knowledge, there
has not been any works in developing algorithms that generalize
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Figure 1: The number of labels of high/low arousal and
high/low valence utilized in our dataset. (“H”: High, “L”:
:Low, “A”: Arousal, “V”: Valence)

in performing cross corpora emotion recognition using both EDA
and ECG.

In this work, our goal is to develop a robust transfer learning
strategy to perform emotion recognition using physiology across
databases. Our core hypothesis is that individuals would have simi-
lar subjective feelings when exposing to similar audio-visual stimuli
that triggers internal physiology. Hence, by explicitly using media
content as constraint in our cross corpora emotion algorithm, it
would lead to an effective cross corpus recognition accuracy across
databases. Specifically, we propose a Visual Semantic Graph Learn-
ing Convolutional Network (VGLCN) for cross corpora emotion
recognition using physiology. Our framework is evaluated on pub-
licly available Amigos (Am) dataset [4] and Ascertain (As) dataset
[24], in which each subject is exposed to a set of audio-visual movie
clips with varying degree of intended affect-triggering content.
We jointly model how a person’s internal physiology response to
these multiple stimuli using a graph structure, then further perform
the transfer tasks on the subject-wise graph-embedding learned
from the collected physiological signals. In this work, we pay extra
attention in carrying out our experiments, i.e., the cross valida-
tion experiments are not only subject-independent but also video
stimuli-independent, when learning to transfer between these two
databases. Our framework achieves the state of the art emotion
recognition unweighted average recall (UAR) using physiology,
which is 67.9%, 56.9% for arousal and 79.8%, 70.4% for valence in
As→Am and Am→As respectively (we will explain the “cross
dataset” scenario setting in 3.1).

2 METHODOLOGY
2.1 Datasets
In this study, we use two large emotional datasets collected under a
similar scenario for algorithm development. In each dataset, a series
of emotional videos with intended emotional elicitation (annotated
with high/low arousal or valence, -Int) were delivered to the partici-
pants. The participants were asked to label their subjective feelings
(-Sb) at the end of each video clips, while their physiological re-
sponses (Electrocardiogram (ECG), Electrodermal activity (EDA))
were recorded with sensors simultaneously. Our goal is to use these
physiological data for recognizing each individual’s self-rated emo-
tion attributes. Specifically, we carry out the emotion recognition
experiments as a binary classification problem, i.e., -Sb cut-off at

Table 1: The list of the repetitive video stimuli used in both
the Amigos and the Ascertain database.

Video ID Source Movie
Amigos Ascertain

1 10 August Rush
2 13 Love Actually
4 18 House of Flying Daggers
6 20 My Girl
7 23 My Bodyguard
9 31 Prestige
10 34 Pink Flamingos
11 36 Black Swan
12 4 Airplane
13 5 When Harry Met Sally
16 9 Hot Shots

Table 2: An overview of physiological low-level descriptors
extracted from [5]. “F*” indicates 15 statistical functions1.

Modality Low-Level Descriptors

ECG(51)

number_of_artifacts, RMSSD, meanNN, sdNN, cvNN,
CVSD, medianNN, madNN, mcvNN, pNN50, pNN20, Triang,
Shannon_h, ULF, VLF, LF, HF, VHF, Total_Power, LFn,HFn,
LF/HF, LF/P, HF/P, DFA_1, DFA_2,Shannon, FD_Higushi,
Average_Signal_Quality, F* Cardiac_Cycles_Signal_Quality

EDA(68) F*SCR_Onsets, F*SCR_Peaks_Amplitudes,
F*EDA_Phasic, F*EDA_Tonic_Component

the mean of each subject is used as label for final prediction. Figure
1 shows the number of samples in each emotion category. Several
details of the dataset are listed below:
• Amigos (Am) [4]: A total of 16 short emotional videos (dura-
tion<250s) were carefully chosen from previous research as phys-
iology elicitation. 40 participants aged between 21 and 40 (mean
age 28.3) were recruited in a laboratory environment.

• Ascertain (As) [24]: Ascertain is one of the largest datasets aim-
ing for studying physiological responses under emotional con-
tent stimuli. There are 36 short movie clips (duration 51~127s) for
emotion elicitation with 58 university students (mean age 30) re-
cruited in this dataset. The whole data collection was conducted
in the laboratory environment using the commercial physiologi-
cal sensor. Note that there are 11 video stimuli list in Table 1 that
are the same across both the Amigos and the Ascertain databases.

2.2 Computational Framework
2.2.1 Physiological and Visual Content Descriptors. We first pre-
process physiology data, i.e., a low-pass filter cut-off at 60Hz is first
applied on ECG and EDA signals. Several standard low-level physi-
ological descriptors (LLDs) are listed in Table 2 and extracted using
the NeuroKit [5]. A standard z-normalization is performed subject-
wise on each feature dimension to mitigate the issue of individual
differences. In addition, the visual content vector of each emotion
stimuli video (an individual items is a matrix 𝑣) is extracted by using
the pre-trained deep 3D CNNs model with Kinetics proposed in
[10] and results in frame-level descriptors of dimension 1024[13].
1max, min, mean, median, std, skewness, kurtosis, min position, max position,
25_percentile,75_percentile, 75_percentile-25_percentile, 1_percentile, 99_percentile,
99_percentile-1_percentile

Poster Session E2: Emotional and Social Signals in Multimedia 
& Media Interpretation

MM '20, October 12–16, 2020, Seattle, WA, USA 

3000



Figure 2: Our proposedVisual Semantic Graph LearningConvolutionNetwork (VGLCN) on transfer learning. First,We retrieve
all video features in both 𝑣𝑠 and 𝑣𝑡 for the edges S to learn a visual content based graph, and the node-setV is consist of both
𝒙𝒕 and 𝒙𝒔 . Then, we build a graphG = {V,S}. We mask 𝒙𝒕 when training the VGCNmodel and mask 𝒙𝒔 to perform prediction.
Moreover, the VGLCN model will be optimized by considering both LGCN and LGL.

To prevent the curse of dimensionality, the UMAP algorithm[18] is
applied over the dataset to reduce the dimension to 32, and video-
level content vectors are further aggregated using mean pooling
over frames.

2.2.2 Graph Convolutional Network. Recently, Graph Convolu-
tional Network (GCN) has received growing attention for its use
in capturing structural inter-relationship among instances (nodes)
and demonstrates its superior modeling power on various recog-
nition tasks [28]. In this research, our goal is to perform emotion
recognition in a transfer learning setting, i.e., a strict independently
subject and stimuli while emotion recognition scenario, and learn
an adaptive (or optimal) graph representation for GCN architecture.
Thus, we regard it as an unsupervised domain adaptation problem.
We first build a large graph G = {V,E}, whereV is the node-set
which comprised of the physiological data and E is built based
on the video data. Specifically, given a video stimulation data 𝒗,
LLDs 𝒙 and an emotional label 𝒚, the objective of GCN is trained
on source domain 𝐷𝑠 = (𝑣𝑠

𝑘
, 𝑥𝑠

𝑖𝑘
, 𝑦𝑠

𝑖𝑘
)𝑛𝑠 , while preserving the trans-

ferability toward unlabeled target domain 𝐷𝑡 = (𝑣𝑡
𝑙
, 𝑥𝑡

𝑗𝑙
)𝑛𝑡 , where

𝑖 and 𝑗 refer to the non-overlapped subjects and 𝑘 and 𝑙 are the
non-overlapped emotional elicitations.

Insipred by [28], we proposed a variation of GCNwhich performs
a spectral convolution for modeling unstructured graphical data
to handle the problem of transfer learning. The core GCN layer
can be interpreted as a special case of a first-order differentiable
message-passing framework:

𝐻 (𝑙+1) = 𝜎 (D− 1
2AD− 1

2𝐻 (𝑙)𝑊 (𝑙) ), (1)

where 𝐻 𝑙 denotes the 𝑙𝑡ℎ layer in the network, and 𝐷 , 𝐴 refers to
the degree and adjacency matrix decomposed from the graph G. In

addition, The model input 𝐻0 is equivalent to the node matrixV
of the graph with shape 𝑁 × 𝑑 , where 𝑁 = 𝑛𝑠 + 𝑛𝑡 is the number
of all nodes with feature dimension 𝑑 . Besides, during the forward
pass, each node would perform message sharing among the linked
nodes, then multiplied by a learnable weight matrix𝑊 of shape
𝑑𝑙x𝑑𝑙+1, and finally activated by a non-linearity function 𝜎 . Thus,
the whole network would output a 𝑁 × 1 emotion state prediction
for both source and target data, and all of parameters are updated
through standard cross-entropy loss by giving it the source data
label only:

LGCN = − 1
𝑛𝑠

∑
[𝑦𝑠 logF (G) + (1 − 𝑦𝑠 ) (1 − logF (G))] . (2)

Moreover, the overall network could be implemented and backprop-
agated using the sparse matrix multiplication kernel [26].

2.2.3 Learning Visual Semantic Graph. Better modeling of these
videos to include a prior description of latent control of the physi-
ology resulting from these video contents. Since the physiological
responses are induced through the contents of videos, we include
prior descrition as a latent control of the physiology resulting from
such video contents. That is, we train a graph to learn the relation-
ships between the contents of videos, and then integrate this with
physiological responses to the GCN model. To be more specific,
in order to integrate video content into the GCN, we construct a
self-learning graph G = {V,S} to learn structural relationships
between video contents. We follow work in [21] that looks for a
nonnegative function S as 𝑆𝑎𝑏 = 𝑔(𝑣𝑎, 𝑣𝑏 ) to represent the pair-
wise relationship between video data 𝒗𝒂 and 𝒗𝒃 from both source
and target domain. More specifically, the implementation of 𝑆𝑎𝑏
is calculated in a single-layer low-dimensional embedding neural
network parameterized by a projection matrix 𝑃 ∈ R𝑝×𝑑 , 𝑑 < 𝑝 and
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Table 3: A summary of the experimental recognition results. ‘Am’ represents the dataset of Amigos. ‘As’ expresses the dataset
of Ascertain. In VGCN and VGLCN model, “(𝑓 𝑣 , 𝑓 𝑝 )” means the edges are created by video features and the nodes are using
physiological features.

Am→ Am As→ As As→ Am Am→ As
Arousal Valence Arousal Valence Arousal Valence Arousal Valence

SVM (𝑓 𝑝 ) 0.476 0.537 0.512 0.552 0.517 0.514 0.501 0.490
DNN (𝑓 𝑝 ) 0.562 0.599 0.536 0.573 0.560 0.527 0.518 0.513

SVM (𝑓 𝑝+𝑓 𝑣 ) 0.477 0.596 0.488 0.569 0.471 0.450 0.500 0.448
DNN (𝑓 𝑝+𝑓 𝑣 ) 0.533 0.570 0.535 0.549 0.556 0.517 0.533 0.521
DANN (𝑓 𝑝+𝑓 𝑣 ) 0.537 0.590 0.531 0.548 0.577 0.576 0.533 0.543
CDAN-E (𝑓 𝑝+𝑓 𝑣 ) 0.536 0.588 0.520 0.549 0.574 0.561 0.544 0.528
VGCN (𝑓 𝑝 , 𝑓 𝑝 ) 0.528 0.544 0.539 0.578 0.553 0.586 0.558 0.594
VGCN (𝑓 𝑣 , 𝑓 𝑝 ) 0.515 0.591 0.499 0.527 0.631 0.676 0.536 0.598
VGLCN (𝑓 𝑝 , 𝑓 𝑝 ) - - - - 0.556 0.600 0.550 0.603
VGLCN (𝑓 𝑣 , 𝑓 𝑝 ) - - - - 0.679 0.798 0.569 0.704

a weight vector 𝑧 = (𝑧1, 𝑧2, · · · , 𝑧𝑝 )𝑇 ∈ R𝑝×1. We then transform
our input video features using ˜𝑣𝑎 = 𝑣𝑏𝑃 , for 𝑎 = 1, 2, · · ·𝑛. Formally,
we learn the graph edges S as:

𝑆𝑎𝑏 = 𝑔(𝑣𝑎, 𝑣𝑏 ) =
exp(ReLU(𝑧𝑇 | ˜𝑣𝑎 − ˜𝑣𝑏 |))∑𝑛
𝑏=1 exp(ReLU(𝑧𝑇 | ˜𝑣𝑎 − ˜𝑣𝑏 |))

, (3)

where ReLU(·) is an activation function that equals to max(0, ·).
That is to say, ReLU(·) guarantees the nonnegativity of 𝑆𝑎𝑏 . In
addition, the above operation applied on each row of S is to ensure
that the learned edge S will be summed to one by 𝑏.

Finally, we optimize the optimal weight vector 𝑧 by minimizing
the following loss function,

LGL = 𝛾𝑣

𝑛∑
𝑎,𝑏=1

∥𝑣𝑎 − 𝑣𝑏 ∥22 𝑆𝑎𝑏 + 𝛾𝑆 ∥𝑆𝑎𝑏 ∥2𝐹 . (4)

With this loss function, the larger distance of ∥𝑣𝑎 − 𝑣𝑏 ∥2 between
𝑣𝑎 and 𝑣𝑏 is encouraged with a smaller value of 𝑆𝑎𝑏 . In other words,
𝑆𝑎𝑏 tends toward a larger weight when the distance between 𝑣𝑎
and 𝑣𝑏 is shorter. Besides, the second term is used to control the
sparsity of learned graph G because of the simplex property of S.

2.2.4 Visual Semantic Graph Learning Convolutional Network. Our
proposed Visual Semantic Graph Learning Convolutional Network
(VGLCN) integrates the self-learning mechanism of edge weights
(derived from video data) into the GCN. We follow the work in [11]
to learn an optimal graph representation and to simultaneously inte-
grate graph learning and convolution to improve the unsupersived
transfer recognition performance.

𝐻 (𝑙+1) = 𝜎 (D− 1
2

𝑠 SD− 1
2

𝑠 𝐻 (𝑙)𝑊 (𝑙) ), (5)

where the degree and adjacency matrix that is decomposed from
visual semantic edge S has the identical definition 𝐷𝑠 as described
in Section 2.2.2. In addition, the parameters of this network are
trained by minimizing the following loss function:

LGLCN = LGCN + 𝜆LGL, (6)

where LGCN and LGL are defined in Eq.(2) and Eq.(4), respectively,
and parameter 𝜆 ≥ 0 is a tradeoff parameter.

3 EXPERIMENTAL SETUP AND RESULTS
3.1 Experimental Setup
There are two scenarios to evaluate our method:

(1) Within dataset: source and target are all from either Amigos
(Am→Am) or all from Ascertain (As→As) separately. A sub-
ject independent 10-fold cross-validation and a video indepen-
dent 4-fold cross-validation were jointly conducted results in a
total of 40-fold cross-validation to evaluate the transferability
for unseen subjects stimulated under unknown video in a single
dataset.

(2) Cross dataset: train the model on either Amigos or Ascertain
and test on the other (As→Am or Am→As). The repeated
stimuli’s Table 1 are excluded to guarantee the robustness of
transferability on unseen videos.

Several hyperparameters are grid-searched: dropout rate between
[0.2,0.5], learning rate among [0.005,0.001,0.0005]. Batch size is
fixed as [16,32], the max epoch is 500, and optimizer is Adam. In
VGLCN, graph-related parameters are chosen with 𝛾𝑣 between
[0.1,0.01], 𝛾𝑆 among [0.01,0.001,0.0001], and 𝜆 in loss function is
setting between [0.1,0.01]. The final evaluation metric used is the
unweighted average recall (UAR).

3.2 Comparison Models
We first conduct our experiments utilizing linear SVM and vanilla
DNN only with the physiological features. The architecture of our
DNN models includes three dense layers with dimension [𝑑 , 𝑑/3,
𝑑/5]. Then we carry out the experiments with both physiological
features and video semantic features, and we compare them with
the following models to examine the effectiveness of our proposed
VGLCN.

• CDAN-E: Conditional Domain Adversarial Adaptation With En-
tropy Constraint. CDAN-E and DANN (Domain Adversarial Neu-
ral Networks) are used here as another approach of unsupervised
domain adaptation method. These frameworks are all proposed
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(a) source features in CDAN-E model of
Am→ As.

(b) source features in CDAN-E model
of As→ Am

(c) source features in VGLCN model of
Am→ As

(d) source features in VGLCN model of
As→ Am

(e) target features in CDAN-E model of
Am→ As.

(f) target features in CDAN-E model of
As→ Am

(g) target features in VGLCN model of
Am→ As

(h) target features in VGLCN model of
As→ Am

Figure 3: Scatter plot of the results by t-SNE for source and target features derived from CDAN-Emodel (a)(b)(e)(f) and VGLCN
model (c)(d)(g)(h) with respect to the 2 classes of high and low valence.

by Ganin et al. [8, 17] for image classification. CDAN-E is con-
sidered as one of the state of the art methods on unsupervised
domain adaptation that performs domain alignment on image
features conditioned on the output of classifiers. In addition, it uti-
lizes entropy minimization on target samples. We implement the
adversarial network includes two dense layers with dimension
of [𝑑/5, 10].

• VGCN: Visual Content Regularized Graphical Neural Network.
In “within dataset" scenario, there would be 40 graphs built by
utilizing all of the physiological data, i.e., the total combination of
the subject and the video independent cross-validation setting. In
“cross dataset" scenario, there is only one graph built by utilizing
all of the physiological data.
We first build a large graph G = {V,E}. We then extract the
visual semantic features then retrieve those videos with positive
Spearman correlation coefficient from both 𝑣𝑠 and 𝑣𝑡 for each
subject’s physiology data (as a node). Therefore, any of the two
nodes inV would be linked if their original video stimuli 𝒗 have
positive correlation coefficient. In short, our graph consists of
the linked edges by considering the video content across both
databases, where the nodes represent the physiology data. With
this, we have bind both source and target into a large visual
semantic graph 𝑮 for further processing.

• VGLCN: Proposed Visual Content Regularized Graphical Learn-
ing Neural Network. Our proposed VGLCN is additional modifi-
cation from VGCN model. Here, our objective is to enhance the
transferability of physiology-based emotion recognition with the
constraint of the video stumuli. We only consider “cross dataset"
scenario, there is only one graph built G = {V,S} utilizing all
of the video data 𝒗𝒔 and 𝒗𝒕 , then we will mask the physiological
data from target domain 𝒙𝒕 when training the model and mask
𝒙𝒔 to perform prediction. The specifics of learning with visual
content embedding is described in 2.2.3.

3.3 Emotion Recognition Results
Table 3 summarizes our experimental results. Our proposed VGLCN
model outperforms all comparison methods on cross-database set-
tings. The improvement is much more obvious which results in a
relative gain of 10.5%, 2.5% for arousal and 23.7%, 14.4% for valence
in As→Am and Am→As, respectively. Several observations can
be made. First, there exists a large data discrepancy across datasets
(even within the same dataset). This discrepancy results from either
subject differences or heterogeneous video contents that deteriorate
emotion recognition accuracy when using SVM or DNN without
any strategy in constrain learning jointly with video information.
Besides, directly concatenate the visual features for joint content-
physio modeling deterioriate the recognition performances further.
This suggests that the video features do not directly embed dis-
criminative emotional information themselves, and the intricate
dependency between video stimuli and physiological responses
require a sophisticated algorithm to handle.

Second, we observe that although DANN and CDAN-E has been
considered as a relatively strong baseline, the improvement com-
pared with vanilla DNN is not obvious in this task. We hypothesize
that since the domain adversarial invariant mechanism of DANN
and CDAN-E mainly are focusing on mapping cross datasets’ fea-
ture distribution conditioned on predicted labels, it could only min-
imize the discrepancy of physiological representation in a global
(holistic) manner and would fail to consider the local variations (like
subject or elicitation differences), which is especially critical for
physiology-based emotion recognition for an individual. Therefore,
we train VGCN to model the relationships between the contents of
videos based on the correlations, and this mechanism works better
and improves the model performance.

Furthermore, our proposed visual content-based VGLCN utiliz-
ing learnable visual semantic graph modeling that links physiolog-
ical representations under similar visual stimuli, which helps in
obtaining improved robustness results in the transfer setting. The
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Figure 4: A histogram of the weight summation over each connected video in the learned graph. “f-overlap.”: the feature
identical percentage by each video ID through VGLCN model. “Sum of Weight”: the total weight of each connected video in
the learned graph.

major difference between VGCN and VGLCN is in the construction
the graphs. VGLCNminimizes a loss function to learn the structural
relationships between the video contents in a non-linear manner.
On the other hand, the graph of VGCN is made according to the
plain linear correlations computed between the high-dimensional
features of videos. That is to say, VGLCN learns a better graph
representation weights with self-learning strategy. Besides, we also
observe that our VGLCN shows a larger boost on the valence predic-
tion than arousal task. This could result from that visual contents
usually delivered more valence-related messages [27]. Additional
analysis result is shown in the following section.

4 ANALYSIS AND DISCUSSION
In this section, to understand the potential modulation of visual
stimuli toward affective physio-responses, we specifically analyze
the cross-corpus valence recognition (which has the highest UAR).
Firstly, we visualize the representations along with several video-
level statistics. Then, we focus on the most informative components
of feature sets in this transfer task.

4.1 Visualization
To demonstrate the effectiveness of the proposed VGLCN model in
the transfer tasks, we plot the features using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) for visualization with the relatively
strong baseline – CDAN-E and our proposed core method – VGLCN.
In Figure 3, where (a)(b) show two-dimension visualization by re-
ducing high-dimensional features of 2 different transfer tasks. We
observe that the different labels of source features are separated,
while the target features in (e)(f) are not. This indicates that the
CDAN-E model can be trained better in the source dataset, but
there is no transferability of emotion discriminability toward un-
seen data. In contrast, due to themechanism by using video stimulus
we modeled, though some of the features used to train the VGLCN
model are mapped into an identical position in the plot, features in
(c)(d)(g)(h) are indeed more distinguishable in either cases of using
Amigos or Ascertain as source data with our proposed VGLCN.

Moreover, in order to realize what kind of features easily project
the same coordinates, we calculate 2 vectors as Figure 4 shows: 1)
the percentage of these identical features for each video. 2) sum
up the weight of connected videos for each video from the learned
graph. We manually aggregate this proportion into two groups,

Table 4: The informative features in cross dataset scenario.
“*” represents the features in 𝑝 ≤ 0.01.
Modality Low-Level Descriptors

ECG(5) Triang*, Shannon_h*, DFA_2*, correlation_dimension*, Entropy_Multiscale_AUC*

EDA(17)

SCR_Onsets_99_percentile*, SCR_Onsets_99_percentile-1_percentile*,
SCR_Onsets_max_position, SCR_Onsets_max*, SCR_Onsets_mean*,
SCR_Onsets_median*, SCR_Onsets_std*, SCR_Onsets_quartile_range*,
SCR_Onsets_up_quartile*, SCR_Onsets_low_quartile*,
EDA_Phasic_VLF, EDA_Phasic_min position, EDA_Tonic_1_percentile,
EDA_Tonic_99_percentile-1_percentile*, EDA_Tonic_std, EDA_Tonic_min,
EDA_Tonic_VLF*,

all features or only partial features are mapped into an identical
position, with identical video ID. The results of two-tailed Student’s
t-test indicate that there is a statistically difference between these
two groups in both Am (𝑠 = 1.931, 𝑝 = 0.07394) and As (𝑠 =

2.263, 𝑝 = 0.03337), respectively. This implies that the more weights
the video connects, the more diversities the feature embedding will
be learned (fewer weights would result in learning an identical
physiological representation in our VGLCN).

4.2 Analyses of Informative Features
We further analysis the effectiveness of our transfer between two
databases by inspecting the impacts of physiological in terms of
self-disclosed emotion states (-Sb). Firstly, according to -Sb, we split
features into two groups, high-class or low-class valence. Moreover,
we perform the two-tailed Student’s t-test between two groups. The
features with p-value less than 0.05 in both Am and As databases
are listed in Table 4. Surprisingly, these features occupy 18.5% of all
extracted physiological features. Furthermore, we train our VGLCN
model only using these statistically significant physiological fea-
tures, and we achieves 76% and 70% UAR inAs→Am andAm→As,
respectively. These promising results further indicate that these in-
formative physiological features are very effective for cross-corpus
emotion recognition and useful on the high-level emotional dimen-
sion task, valence. Besides, we also carry out the same analysis on
arousal recognition tasks. There is no physiological features that
pass the statistical testing result. This observation might explain the
reason why our proposed model did not perform as well on arousal
dimension as compared to valence. Our analysis is consistent with
previous studies that physiological signals could act as internal
measure for subjective feelings toward affective multimedia stimuli:
Fukumotoet et al. [7] shows that the change in intensity and cycle
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Figure 5: A line chart for the UARs under different k in
As→Am and Am→As.

of respiration is related to the salient horror time points in movies.
In addition, Soleymani et al. [23] shows that motion components
in videos are correlated with the viewers’ valence feelings when
considering both multimedia content and physiological features.

Second, we have shown that the video contents are important in
the modeling. Hence, in order to investigate how the videos affect
the model performance, we calculate the k-nearest video stimulus
for each video by directly assigning the label according to the
video stimuli based on voting. That is to say, the annotation of the
videos are given through the original emotional stimulation state
used to trigger the viewer. However, from Figure 5, it shows the
accuracy obtained with this particular set of emotion recognition
for different levels of k. Here, k is the number of videos connected
using k-nearest. In order to avoid the situation where the vote is
tied, we only consider k to be an odd number. Specifictly, there are
only 16 videos from Amigos, that is, each video from Ascertain can
only find up to 15 videos fromAmigos based on k-nearest algorithm.
On the other hand, in “As→Am” scenario, the maximum value of k
can be set to 25. The results also clearly show that by simply looking
at similar video content does not result in a good recognition of
viewer’s self-reported emotion state without jointly considering
physiological responses. In other words, it is important to jointly
consider both the video content and the subject’s physiological
responses in order to achieve robust emotion recognition.

5 CONCLUSION
In this work, we present a novel framework of graph learning
convolutional network for individual emotion recognition using
physiological data, specifically evaluated in the context of transfer
tasks (subject independent, video stimuli independent, and unsu-
pervised cross database). The experiments show that our method
reaches the state of the art emotion recognition results. To our best
knowledge, this is one of the first work on emotion transfer learning
that jointly considers the physiology and the video content across
datasets. There are multiple future directions. An immediate one
would be verifying our results on similar cross datasets such as Deap
[14], Dreamer [12] and so on. Second, we will include additional
modalities in the emotion stimuli, such as the sound in the video,
which may help on the dimension that is more acoustically-driven
(e.g., arousal). Lastly, a better understanding which components
within a media clip that would trigger physiological responses
linked to subject feelings would help in advancing a variety of
human-centered multimedia applications [2, 20].
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